Mesothelioma
MesoGraph: Automatic Profiling of Malignant Mesothelioma Subtypes from Histological Images
Eastwood, Mark, Sailem, Heba, Tudor, Silviu, Gao, Xiaohong, Offman, Judith, Karteris, Emmanouil, Fernandez, Angeles Montero, Jonigk, Danny, Cookson, William, Moffatt, Miriam, Popat, Sanjay, Minhas, Fayyaz, Robertus, Jan Lukas
Malignant mesothelioma is classified into three histological subtypes, Epithelioid, Sarcomatoid, and Biphasic according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Biphasic tumors display significant populations of both cell types. This subtyping is subjective and limited by current diagnostic guidelines and can differ even between expert thoracic pathologists when characterising the continuum of relative proportions of epithelioid and sarcomatoid components using a three class system. In this work, we develop a novel dual-task Graph Neural Network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score of all the cells in the sample. The proposed approach uses only core-level labels and frames the prediction task as a dual multiple instance learning (MIL) problem. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multi-centric test set from Mesobank, on which we demonstrate the predictive performance of our model. We validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score, finding that some of the morphological differences identified by our model match known differences used by pathologists. We further show that the model score is predictive of patient survival with a hazard ratio of 2.30. The code for the proposed approach, along with the dataset, is available at: https://github.com/measty/MesoGraph.
Predicting Cancer Using Supervised Machine Learning: Mesothelioma
Background: Pleural Mesothelioma (PM) is an unusual, belligerent tumor that rapidly develops into cancer in the pleura of the lungs. Pleural Mesothelioma is a common type of Mesothelioma that accounts for about 75% of all Mesothelioma diagnosed yearly in the U.S. Diagnosis of Mesothelioma takes several months and is expensive. Given the risk and constraints associated with PM diagnosis, early identification of this ailment is essential for patient health. Objective: In this study, we use artificial intelligence algorithms recommending the best fit model for early diagnosis and prognosis of MPM. Methods: We retrospectively retrieved patients clinical data collected by Dicle University, Turkey, and applied multilayered perceptron (MLP), voted perceptron (VP), Clojure classifier (CC), kernel logistic regression (KLR), stochastic gradient decent SGD), adaptive boosting (AdaBoost), Hoeffding tree (VFDT), and primal estimated sub-gradient solver for support vector machine (s-Pegasos). We evaluated the models, compared and tested using paired T-test (corrected) at 0.05 significance based on their respective classification accuracy, f-measure, precision, recall, root mean squared error, receivers characteristic curve (ROC), and precision-recall curve (PRC). Results: In phase-1, SGD, AdaBoost. M1, KLR, MLP, VFDT generate optimal results with the highest possible performance measures. In phase 2, AdaBoost, with a classification accuracy of 71.29%, outperformed all other algorithms. C-reactive protein, platelet count, duration of symptoms, gender, and pleural protein were found to be the most relevant predictors that can prognosticate Mesothelioma. Conclusion: This study confirms that data obtained from Biopsy and imagining tests are strong predictors of Mesothelioma but are associated with a high cost; however, they can identify Mesothelioma with optimal accuracy.
Identification of Cancer - Mesothelioma Disease Using Logistic Regression and Association Rule
Malignant Pleural Mesothelioma (MPM) or malignant mesothelioma (MM) is an atypical, aggressive tumor that matures into cancer in the pleura, a stratum of tissue bordering the lungs. Diagnosis of MPM is difficult and it accounts for about seventy-five percent of all mesothelioma diagnosed yearly in the United States of America. Being a fatal disease, early identification of MPM is crucial for patient survival. Our study implements logistic regression and develops association rules to identify early stage symptoms of MM. We retrieved medical reports generated by Dicle University and implemented logistic regression to measure the model accuracy. We conducted (a) logistic correlation, (b) Omnibus test and (c) Hosmer and Lemeshow test for model evaluation. Moreover, we also developed association rules by confidence, rule support, lift, condition support and deployability. Categorical logistic regression increases the training accuracy from 72.30% to 81.40% with a testing accuracy of 63.46%. The study also shows the top 5 symptoms that is mostly likely indicates the presence in MM. This study concludes that using predictive modeling can enhance primary presentation and diagnosis of MM.
Predicting the occurrence of Malignant Mesothelioma using Machine Learning
Malignant mesothelioma is a rare form of cancer that affects the thin cell lining(mesothelium) of the body's internal organs and structures. The most common area affected is the lining of lungs and the chest wall, less commonly the lining of the abdomen and rarely, the sac surrounding the heart or the testis. More than 80% 0f Mesothelioma are a result of exposure to Asbestos. However, it may also be related to previous simian virus(SV40) infections, and to some extent, genetic predisposition. Molecular mechanism can also be implicated in the development of mesothelioma.